

www.psylotech.com info@psylotech.com 1.847.328.7100 Evanston, IL, USA

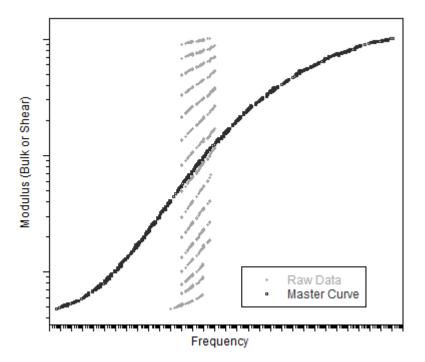
Nonlinear Plastic & Rubber Simulation

Psylotech's nonlinear viscoelastic simulation process addresses challenges with polymer simulation, including time, history, rate, temperature, hydrostatic pressure and large deformation effects. The solution combines **1**/data generated on a proprietary instrument and **2**/a simulation software add-on module for the major finite element codes.

Novel Test

Psylotech's polymer test system generates an accurate, complete, thermodynamically consistent data set for effective finite element analysis. The instrument is highly differentiated from alternatives:

- 1. **Axial + transverse strain measurement** informs direct bulk & shear modulus calculation. Any mechanical loading can be split into dilatational and distortional components, so these two properties fully define the material for FEA.
- 2. Proprietary, **ultra high resolution sensors** enable effective rubbery and glassy force measurement, while also accommodating thermal strains substantially larger than mechanical strain perturbations.
- 3. **Local strain measurement** on tensile specimens bypasses contact point stress and friction errors from traditional beam-bending dynamic mechanical analysis.


Contract tests are conducted as isothermal frequency sweeps. Temperature inside a vacuum-insulated, forced convection, environmental chamber is controlled from a specimen mounted thermocouple. Dynamic shear & bulk modulus are calculated by:

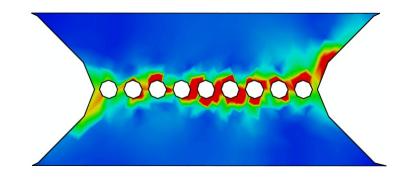
 $G^{*} = \frac{\sigma_{11}^{*}}{2(\varepsilon_{11}^{*} - \varepsilon_{22}^{*})} \qquad \kappa^{*} = \frac{\sigma_{11}^{*}}{3(\varepsilon_{11}^{*} - 2\varepsilon_{22}^{*})}$

www.psylotech.com info@psylotech.com 1.847.328.7100 Evanston, IL, USA

Experimental Data Post Processing

Axial and transverse strain are concurrently measured on the same sample with the same loading & processing history. Therefore, bulk and shear properties can be effectively inferred. To generate master curves, isothermal frequency sweeps are shifted vertically and horizontally. The unique shifting process checks for self-consistent ency and thermodynamic viability:

- 1. Poisson's ratio is maintained within a reasonable range
- 2. Inferred loss modulus is compared to measurements
- 3. Prony series relaxation times are always positive


The result is a complete mathematical description of a viscoelastic material's time and temperature dependence for FEA.

Simulation Software Module

Viscoelasitc material properties are incorporated into a nonlinear simulation software module, accommodating:

- 1. time, including rate and history effects
- 2. temperature
- 3. hydrostatic **pressure**
- 4. large deformation

The module is a material definition based on Knauss & Emri's Free Volume reduced time model (1981), modified for shear by Popelar & Liechti (1997). It is currently available for Abaqus[™], where Psylotech is a Simulia[™] software partner. Add-on modules for the other major finite element codes will follow.

About Psylotech

Psylotech provides **1**/contract testing services, **2**/a nonlinear viscoelastic simulation software add-on module, and **3**/instrumentation for simulation. For structural plastics, rubbers and composites, Psylotech offers a complete simulation solution, consisting of contract test data and software to unlock the value of that data. Additionally, under-microscope load frames offer unprecedented speed, stroke and resolution for micro & nano scale universal testing.